Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Study on temperature dependent resistivity of indium-doped cadmium zinc telluride

Identifieur interne : 000D21 ( Chine/Analysis ); précédent : 000D20; suivant : 000D22

Study on temperature dependent resistivity of indium-doped cadmium zinc telluride

Auteurs : RBID : Pascal:09-0106417

Descripteurs français

English descriptors

Abstract

Indium-doped CdZnTe crystals, grown by the modified vertical Bridgman method, were characterized by temperature dependent resistivity measurements in the range from 220 to 320 K. The Fermi level, pinned near the midgap, was confirmed by fitting ln(ρ) versus 1/k0T plots, giving energies of 0.63 eV and 0.72 eV above the valence band for the high resistivity samples, with doping levels of 5.0 x 1016 at cm-3 and 4.8 x 1017 at cm-3, respectively. Different dominant deep level defects or complexes for pinning the Fermi level, and hence producing high resistivity, were expected when comparing the charge transport behaviours of the materials and the dopant concentration. However, two energies of 0.24 eV and 0.33 eV, below the conduction band for the Fermi level, were calculated at positive and negative bias voltages, respectively, for a low resistivity sample doped by 9.7 x 1017 at cm-3 In.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:09-0106417

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Study on temperature dependent resistivity of indium-doped cadmium zinc telluride</title>
<author>
<name>YADONG XU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Materials Science and Engineering, Northwestern Polytechnical University</s1>
<s2>Xi'an 710072</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Xi'an 710072</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Physics, University of Surrey</s1>
<s2>Guildford GU2 7XH</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Guildford GU2 7XH</wicri:noRegion>
</affiliation>
</author>
<author>
<name>WANQI JIE</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Materials Science and Engineering, Northwestern Polytechnical University</s1>
<s2>Xi'an 710072</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Xi'an 710072</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sellin, Pall" uniqKey="Sellin P">Pall Sellin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Physics, University of Surrey</s1>
<s2>Guildford GU2 7XH</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Guildford GU2 7XH</wicri:noRegion>
</affiliation>
</author>
<author>
<name>TAO WANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Materials Science and Engineering, Northwestern Polytechnical University</s1>
<s2>Xi'an 710072</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Xi'an 710072</wicri:noRegion>
</affiliation>
</author>
<author>
<name>WEIHUA LIU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Materials Science and Engineering, Northwestern Polytechnical University</s1>
<s2>Xi'an 710072</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Xi'an 710072</wicri:noRegion>
</affiliation>
</author>
<author>
<name>GANGQIANG ZHA</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Materials Science and Engineering, Northwestern Polytechnical University</s1>
<s2>Xi'an 710072</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Xi'an 710072</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Veeramani, Perumal" uniqKey="Veeramani P">Perumal Veeramani</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Physics, University of Surrey</s1>
<s2>Guildford GU2 7XH</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Guildford GU2 7XH</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mills, Chris" uniqKey="Mills C">Chris Mills</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Physics, University of Surrey</s1>
<s2>Guildford GU2 7XH</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Guildford GU2 7XH</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">09-0106417</idno>
<date when="2009">2009</date>
<idno type="stanalyst">PASCAL 09-0106417 INIST</idno>
<idno type="RBID">Pascal:09-0106417</idno>
<idno type="wicri:Area/Main/Corpus">005A93</idno>
<idno type="wicri:Area/Main/Repository">004A99</idno>
<idno type="wicri:Area/Chine/Extraction">000D21</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0022-3727</idno>
<title level="j" type="abbreviated">J. phys., D. Appl. phys. : (Print)</title>
<title level="j" type="main">Journal of physics. D, Applied physics : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cadmium Zinc Tellurides Mixed</term>
<term>Complex defect</term>
<term>Deep level</term>
<term>Defect states</term>
<term>Doping</term>
<term>Electrical conductivity</term>
<term>Fermi level</term>
<term>IV characteristic</term>
<term>Impurity density</term>
<term>Indium additions</term>
<term>Temperature effects</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Effet température</term>
<term>Conductivité électrique</term>
<term>Dopage</term>
<term>Addition indium</term>
<term>Niveau Fermi</term>
<term>Caractéristique courant tension</term>
<term>Niveau profond</term>
<term>Etat défaut</term>
<term>Défaut complexe</term>
<term>Cadmium Zinc Tellurure Mixte</term>
<term>Concentration impureté</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Indium-doped CdZnTe crystals, grown by the modified vertical Bridgman method, were characterized by temperature dependent resistivity measurements in the range from 220 to 320 K. The Fermi level, pinned near the midgap, was confirmed by fitting ln(ρ) versus 1/k
<sub>0</sub>
T plots, giving energies of 0.63 eV and 0.72 eV above the valence band for the high resistivity samples, with doping levels of 5.0 x 10
<sup>16</sup>
at cm
<sup>-3</sup>
and 4.8 x 10
<sup>17</sup>
at cm
<sup>-3</sup>
, respectively. Different dominant deep level defects or complexes for pinning the Fermi level, and hence producing high resistivity, were expected when comparing the charge transport behaviours of the materials and the dopant concentration. However, two energies of 0.24 eV and 0.33 eV, below the conduction band for the Fermi level, were calculated at positive and negative bias voltages, respectively, for a low resistivity sample doped by 9.7 x 10
<sup>17</sup>
at cm
<sup>-3</sup>
In.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-3727</s0>
</fA01>
<fA02 i1="01">
<s0>JPAPBE</s0>
</fA02>
<fA03 i2="1">
<s0>J. phys., D. Appl. phys. : (Print)</s0>
</fA03>
<fA05>
<s2>42</s2>
</fA05>
<fA06>
<s2>3</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Study on temperature dependent resistivity of indium-doped cadmium zinc telluride</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>YADONG XU</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>WANQI JIE</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SELLIN (Pall)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>TAO WANG</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>WEIHUA LIU</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>GANGQIANG ZHA</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>VEERAMANI (Perumal)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>MILLS (Chris)</s1>
</fA11>
<fA14 i1="01">
<s1>School of Materials Science and Engineering, Northwestern Polytechnical University</s1>
<s2>Xi'an 710072</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Physics, University of Surrey</s1>
<s2>Guildford GU2 7XH</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA20>
<s2>035105.1-035105.6</s2>
</fA20>
<fA21>
<s1>2009</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>5841</s2>
<s5>354000186439090210</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2009 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>18 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>09-0106417</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of physics. D, Applied physics : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Indium-doped CdZnTe crystals, grown by the modified vertical Bridgman method, were characterized by temperature dependent resistivity measurements in the range from 220 to 320 K. The Fermi level, pinned near the midgap, was confirmed by fitting ln(ρ) versus 1/k
<sub>0</sub>
T plots, giving energies of 0.63 eV and 0.72 eV above the valence band for the high resistivity samples, with doping levels of 5.0 x 10
<sup>16</sup>
at cm
<sup>-3</sup>
and 4.8 x 10
<sup>17</sup>
at cm
<sup>-3</sup>
, respectively. Different dominant deep level defects or complexes for pinning the Fermi level, and hence producing high resistivity, were expected when comparing the charge transport behaviours of the materials and the dopant concentration. However, two energies of 0.24 eV and 0.33 eV, below the conduction band for the Fermi level, were calculated at positive and negative bias voltages, respectively, for a low resistivity sample doped by 9.7 x 10
<sup>17</sup>
at cm
<sup>-3</sup>
In.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70B20F</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Effet température</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Temperature effects</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Conductivité électrique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Electrical conductivity</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Doping</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Doping</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Addition indium</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Indium additions</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Niveau Fermi</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Fermi level</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Caractéristique courant tension</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>IV characteristic</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Niveau profond</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Deep level</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Nivel profundo</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Etat défaut</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Defect states</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Défaut complexe</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Complex defect</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Defecto complejo</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Cadmium Zinc Tellurure Mixte</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Cadmium Zinc Tellurides Mixed</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Mixto</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Concentration impureté</s0>
<s5>13</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Impurity density</s0>
<s5>13</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Concentración impureza</s0>
<s5>13</s5>
</fC03>
<fN21>
<s1>075</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D21 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000D21 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:09-0106417
   |texte=   Study on temperature dependent resistivity of indium-doped cadmium zinc telluride
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024